cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A201695 Number of n X 3 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 18, 116, 395, 989, 2068, 3838, 6541, 10455, 15894, 23208, 32783, 45041, 60440, 79474, 102673, 130603, 163866, 203100, 248979, 302213, 363548, 433766, 513685, 604159, 706078, 820368, 947991, 1089945, 1247264, 1421018, 1612313, 1822291
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2011

Keywords

Comments

Column 3 of A201700.

Examples

			Some solutions for n=4:
..1..2..2....0..0..1....0..2..2....0..2..2....1..1..2....0..0..2....0..0..2
..1..2..2....0..2..0....2..0..1....1..1..2....1..2..1....0..2..0....0..1..0
..2..1..2....0..2..0....2..0..1....1..2..0....2..0..1....2..0..0....2..0..0
..2..2..0....2..0..0....2..1..0....2..0..0....2..1..0....2..0..0....2..0..0
		

Crossrefs

Cf. A201700.

Formula

Empirical: a(n) = (3/2)*n^4 + (4/3)*n^3 - 4*n^2 - (29/6)*n + 9.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(3 + 3*x + 56*x^2 - 35*x^3 + 9*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A201696 Number of n X 4 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 27, 395, 4998, 35390, 167625, 607919, 1826778, 4775228, 11211034, 24167306, 48600665, 92261185, 166831642, 289389192, 484248471, 785251265, 1238574341, 1906133765, 2869671064, 4235613920, 6140811719, 8759254221, 12309889872
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2011

Keywords

Comments

Column 4 of A201700.

Examples

			Some solutions for n=3:
..0..1..1..2....0..1..1..2....0..1..1..1....0..1..2..2....0..1..2..2
..1..0..0..2....2..1..1..0....2..0..0..0....0..2..0..0....0..2..1..2
..2..2..2..0....2..1..1..0....2..0..0..0....1..0..0..0....2..1..1..0
		

Crossrefs

Cf. A201700.

Formula

Empirical: a(n) = (1/907200)*n^10 + (13/20160)*n^9 + (8321/120960)*n^8 + (97/105)*n^7 - (40969/5400)*n^6 + (22681/960)*n^5 - (11661313/362880)*n^4 - (388097/10080)*n^3 + (4320179/16800)*n^2 - (323861/840)*n + 185.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(3 - 6*x + 263*x^2 + 1643*x^3 - 1328*x^4 - 4426*x^5 + 5086*x^6 - 1972*x^7 + 1789*x^8 - 1233*x^9 + 185*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)

A201697 Number of nX5 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 37, 989, 35390, 930564, 14268351, 142436489, 1034563890, 5898023820, 27803725006, 112491133042, 401503571755, 1290797861479, 3798580774670, 10363168825912, 26478119492263, 63883865534377, 146539437113683
Offset: 1

Views

Author

R. H. Hardin Dec 03 2011

Keywords

Comments

Column 5 of A201700

Examples

			Some solutions for n=3
..0..1..1..1..2....0..0..1..1..2....0..0..0..0..1....1..1..1..2..2
..2..0..0..2..1....0..0..2..2..1....0..1..1..1..0....1..2..2..1..1
..2..2..2..0..0....2..2..0..0..0....2..0..0..0..0....2..1..1..0..0
		

Formula

Empirical: a(n) = (39619/523069747200)*n^16 + (4468181/653837184000)*n^15 + (29013757/130767436800)*n^14 + (1283689/849139200)*n^13 - (51508993/2874009600)*n^12 - (43603801/256608000)*n^11 + (2874162577/914457600)*n^10 - (7499289487/457228800)*n^9 + (16169769137/731566080)*n^8 + (30409918103/653184000)*n^7 + (408990763441/718502400)*n^6 - (175356370649/25660800)*n^5 + (317152595889599/10897286400)*n^4 - (27799492117129/412776000)*n^3 + (2720484273811/30270240)*n^2 - (23317530409/360360)*n + 19289

A201698 Number of nX6 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 48, 2068, 167625, 14268351, 795339012, 27102769900, 615440785548, 10106227864338, 127441635892627, 1290114077123683, 10846768837607450, 77797729805055016, 486398599750167133, 2697872438447793007
Offset: 1

Views

Author

R. H. Hardin Dec 03 2011

Keywords

Comments

Column 6 of A201700

Examples

			Some solutions for n=3
..0..1..1..2..2..2....1..1..2..2..2..2....0..1..1..1..1..2....0..1..1..1..2..2
..2..0..1..0..2..2....2..2..1..1..2..2....1..1..1..1..2..0....2..0..2..2..0..0
..2..2..1..1..0..0....2..2..2..2..1..1....2..1..1..1..0..0....2..2..0..0..0..0
		

Formula

Empirical: a(n) is a polynomial of degree 34

A201699 Number of nX7 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 60, 3838, 607919, 142436489, 27102769900, 3262897246338, 253484699853930, 13657827589827288, 542530203631847499, 16634470482072064655, 407700696414920035296, 8211702473582080609860, 139013768818199221546289
Offset: 1

Views

Author

R. H. Hardin Dec 03 2011

Keywords

Comments

Column 7 of A201700

Examples

			Some solutions for n=3
..0..1..1..1..1..2..2....0..0..0..0..0..2..2....0..1..1..1..1..1..1
..2..0..0..1..2..0..0....0..2..2..2..2..0..0....1..0..0..0..1..1..1
..2..2..2..1..0..0..0....2..1..1..1..1..0..0....2..1..1..1..0..0..0
		

A201694 Number of n X n 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.

Original entry on oeis.org

3, 10, 116, 4998, 930564, 795339012, 3262897246338
Offset: 1

Views

Author

R. H. Hardin Dec 03 2011

Keywords

Comments

Diagonal of A201700

Examples

			Some solutions for n=3
..0..1..2....1..1..2....0..0..2....0..2..2....0..2..2....0..1..2....0..1..2
..0..2..0....1..2..1....0..2..0....0..2..2....1..0..2....2..0..2....2..1..1
..1..0..0....2..1..1....2..1..0....2..0..0....2..2..1....2..2..1....2..2..0
		
Showing 1-6 of 6 results.