cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201733 Number of isomorphism classes of polycyclic groups (or solvable groups) of order n.

This page as a plain text file.
%I A201733 #27 Nov 03 2017 03:43:35
%S A201733 1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1,51,1,
%T A201733 2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,12,1,2,4,
%U A201733 267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1
%N A201733 Number of isomorphism classes of polycyclic groups (or solvable groups) of order n.
%C A201733 For finite groups solvable is equivalent to polycyclic.
%H A201733 Muniru A Asiru, <a href="/A201733/b201733.txt">Table of n, a(n) for n = 1..500</a>
%H A201733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polycyclic_group">Polycyclic group</a>
%H A201733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Solvable_groups">Solvable group</a>
%F A201733 a(n) = A000001(n) for n < 60.
%F A201733 a(n) <= A000001(n) with equality if and only if n is not in A056866. In particular a(n) = A000001(n) for odd n (this is the Feit-Thompson theorem). - _Benoit Jubin_, Mar 30 2012
%o A201733 (GAP)
%o A201733 a:=[];;
%o A201733 N:=120;;
%o A201733 for n in [1..N] do
%o A201733 a[n]:=0;;
%o A201733 for j in [1..NrSmallGroups(n)] do
%o A201733    if IsPcGroup(SmallGroup(n,j)) = true then
%o A201733     a[n]:=a[n]+1;
%o A201733    fi;
%o A201733   od;
%o A201733   Print(a[n],",");
%o A201733 od;
%K A201733 nonn
%O A201733 1,4
%A A201733 _W. Edwin Clark_, Dec 04 2011