This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201733 #27 Nov 03 2017 03:43:35 %S A201733 1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14,1,5,1,5,2,2,1,15,2,2,5,4,1,4,1,51,1, %T A201733 2,1,14,1,2,2,14,1,6,1,4,2,2,1,52,2,5,1,5,1,15,2,13,2,2,1,12,1,2,4, %U A201733 267,1,4,1,5,1,4,1,50,1,2,3,4,1,6,1,52,15,2,1 %N A201733 Number of isomorphism classes of polycyclic groups (or solvable groups) of order n. %C A201733 For finite groups solvable is equivalent to polycyclic. %H A201733 Muniru A Asiru, <a href="/A201733/b201733.txt">Table of n, a(n) for n = 1..500</a> %H A201733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polycyclic_group">Polycyclic group</a> %H A201733 Wikipedia, <a href="http://en.wikipedia.org/wiki/Solvable_groups">Solvable group</a> %F A201733 a(n) = A000001(n) for n < 60. %F A201733 a(n) <= A000001(n) with equality if and only if n is not in A056866. In particular a(n) = A000001(n) for odd n (this is the Feit-Thompson theorem). - _Benoit Jubin_, Mar 30 2012 %o A201733 (GAP) %o A201733 a:=[];; %o A201733 N:=120;; %o A201733 for n in [1..N] do %o A201733 a[n]:=0;; %o A201733 for j in [1..NrSmallGroups(n)] do %o A201733 if IsPcGroup(SmallGroup(n,j)) = true then %o A201733 a[n]:=a[n]+1; %o A201733 fi; %o A201733 od; %o A201733 Print(a[n],","); %o A201733 od; %K A201733 nonn %O A201733 1,4 %A A201733 _W. Edwin Clark_, Dec 04 2011