cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201744 Decimal expansion of the number x satisfying x^2+5=e^x.

This page as a plain text file.
%I A201744 #8 Feb 07 2025 16:44:07
%S A201744 2,3,5,6,3,5,3,4,8,9,8,5,7,1,5,4,3,6,2,4,2,0,2,5,9,2,3,5,5,6,8,1,4,8,
%T A201744 9,7,8,8,6,9,7,2,1,5,1,5,0,5,4,4,6,8,0,3,2,0,4,3,9,2,1,8,0,9,8,8,5,9,
%U A201744 0,3,0,8,9,3,8,9,9,3,6,5,5,6,4,7,4,2,0,7,3,8,1,7,4,2,8,0,5,9,5
%N A201744 Decimal expansion of the number x satisfying x^2+5=e^x.
%C A201744 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201744 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201744 x=2.35635348985715436242025923556814897886...
%t A201744 a = 1; b = 0; c = 5;
%t A201744 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201744 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A201744 r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]
%t A201744 RealDigits[r]   (* A201744 *)
%Y A201744 Cf. A201741.
%K A201744 nonn,cons
%O A201744 1,1
%A A201744 _Clark Kimberling_, Dec 05 2011