cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201745 Decimal expansion of the number x satisfying x^2+6=e^x.

This page as a plain text file.
%I A201745 #8 Feb 07 2025 16:44:07
%S A201745 2,5,0,9,3,3,6,6,6,8,0,2,5,0,3,6,3,2,4,5,4,6,4,1,0,2,6,7,8,6,9,8,5,2,
%T A201745 7,3,8,4,2,0,3,6,9,5,7,9,0,3,4,4,0,4,1,3,1,6,9,8,7,7,3,5,6,7,0,7,5,2,
%U A201745 2,2,6,1,2,1,0,4,6,8,3,5,9,8,7,1,6,4,2,8,2,2,0,1,6,2,8,6,7,3,4
%N A201745 Decimal expansion of the number x satisfying x^2+6=e^x.
%C A201745 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201745 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201745 2.50933666802503632454641026786985273842....
%t A201745 a = 1; b = 0; c = 6;
%t A201745 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201745 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A201745 r = x /. FindRoot[f[x] == g[x], {x, 2.5, 2.6}, WorkingPrecision -> 110]
%t A201745 RealDigits[r]    (* A201745 *)
%o A201745 (PARI) solve(x=2,3, x^2+6-exp(x)) \\ _Charles R Greathouse IV_, Nov 26 2024
%Y A201745 Cf. A201741.
%K A201745 nonn,cons
%O A201745 1,1
%A A201745 _Clark Kimberling_, Dec 05 2011