cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201750 Decimal expansion of the nonzero number x satisfying -x^2+1=e^x.

This page as a plain text file.
%I A201750 #8 Feb 07 2025 16:44:07
%S A201750 7,1,4,5,5,6,3,8,4,7,4,3,0,0,9,6,8,1,6,0,1,4,4,9,1,2,6,4,3,4,3,6,2,8,
%T A201750 8,7,5,9,6,4,9,7,9,3,8,6,6,3,8,3,0,8,2,6,9,5,5,9,1,7,6,9,5,3,2,2,4,5,
%U A201750 9,4,5,5,2,9,0,1,6,8,9,7,1,8,1,2,6,3,6,6,2,2,7,8,6,3,9,1,5,7,7
%N A201750 Decimal expansion of the nonzero number x satisfying -x^2+1=e^x.
%C A201750 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201750 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201750 -0.7145563847430096816014491264343628875...
%t A201750 a = -1; b = 0; c = 1;
%t A201750 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201750 Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
%t A201750 r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
%t A201750 RealDigits[r]   (* A201750 *)
%Y A201750 Cf. A201741.
%K A201750 nonn,cons
%O A201750 0,1
%A A201750 _Clark Kimberling_, Dec 05 2011