cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201751 Decimal expansion of the least x satisfying -x^2+2=e^x.

This page as a plain text file.
%I A201751 #9 Feb 07 2025 16:44:07
%S A201751 1,3,1,5,9,7,3,7,7,7,7,9,6,2,9,0,1,8,7,8,8,7,1,7,7,3,8,7,3,0,1,2,7,1,
%T A201751 0,4,8,0,1,8,9,3,7,8,5,6,0,5,1,1,5,2,5,1,3,8,4,8,7,8,1,5,9,7,3,3,6,8,
%U A201751 8,0,0,4,3,3,5,4,6,2,5,1,1,2,1,4,4,0,1,5,4,4,0,8,3,8,5,5,4,1,6
%N A201751 Decimal expansion of the least x satisfying -x^2+2=e^x.
%C A201751 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201751 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201751 least:  -1.3159737777962901878871773873012710...
%e A201751 greatest:  0.53727444917385660425676298977967...
%t A201751 a = -1; b = 0; c = 2;
%t A201751 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201751 Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
%t A201751 r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
%t A201751 RealDigits[r]    (* A201751 *)
%t A201751 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
%t A201751 RealDigits[r]    (* A201752 *)
%Y A201751 Cf. A201741.
%K A201751 nonn,cons
%O A201751 1,2
%A A201751 _Clark Kimberling_, Dec 05 2011