This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201751 #9 Feb 07 2025 16:44:07 %S A201751 1,3,1,5,9,7,3,7,7,7,7,9,6,2,9,0,1,8,7,8,8,7,1,7,7,3,8,7,3,0,1,2,7,1, %T A201751 0,4,8,0,1,8,9,3,7,8,5,6,0,5,1,1,5,2,5,1,3,8,4,8,7,8,1,5,9,7,3,3,6,8, %U A201751 8,0,0,4,3,3,5,4,6,2,5,1,1,2,1,4,4,0,1,5,4,4,0,8,3,8,5,5,4,1,6 %N A201751 Decimal expansion of the least x satisfying -x^2+2=e^x. %C A201751 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201751 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201751 least: -1.3159737777962901878871773873012710... %e A201751 greatest: 0.53727444917385660425676298977967... %t A201751 a = -1; b = 0; c = 2; %t A201751 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201751 Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}] %t A201751 r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110] %t A201751 RealDigits[r] (* A201751 *) %t A201751 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201751 RealDigits[r] (* A201752 *) %Y A201751 Cf. A201741. %K A201751 nonn,cons %O A201751 1,2 %A A201751 _Clark Kimberling_, Dec 05 2011