A201754 Decimal expansion of the greatest x satisfying -x^2+3=e^x.
8, 3, 4, 4, 8, 6, 8, 6, 5, 3, 0, 8, 7, 5, 8, 7, 8, 6, 0, 9, 1, 1, 0, 1, 6, 8, 0, 1, 2, 7, 3, 3, 7, 7, 8, 9, 8, 3, 5, 7, 0, 3, 0, 3, 8, 0, 7, 9, 9, 2, 5, 9, 1, 2, 5, 9, 7, 5, 0, 6, 4, 1, 0, 8, 7, 8, 7, 0, 4, 2, 2, 0, 8, 0, 0, 5, 2, 3, 6, 6, 5, 4, 6, 8, 2, 1, 0, 9, 5, 1, 3, 5, 6, 5, 6, 3, 4, 6, 9
Offset: 0
Examples
least: -1.677232708532537998892701011779421... greatest: 0.8344868653087587860911016801273...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = -1; b = 0; c = 3; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110] RealDigits[r] (* A201753 *) r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] RealDigits[r] (* A201754 *)
Comments