cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201756 Decimal expansion of the greatest x satisfying -x^2+4=e^x.

This page as a plain text file.
%I A201756 #8 Feb 07 2025 16:44:07
%S A201756 1,0,5,8,0,0,6,4,0,1,0,9,0,6,3,6,3,0,8,6,2,1,3,8,7,4,4,6,1,2,3,1,6,1,
%T A201756 3,5,1,4,3,2,6,8,2,8,8,6,3,5,8,9,4,8,6,6,0,5,4,4,5,9,4,4,3,0,2,2,7,5,
%U A201756 3,2,7,6,6,3,5,8,3,0,9,3,6,6,4,1,6,0,6,8,5,0,9,8,0,5,5,8,0,0,9
%N A201756 Decimal expansion of the greatest x satisfying -x^2+4=e^x.
%C A201756 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201756 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201756 least:  -1.96463559748886450762265969211097...
%e A201756 greatest:  1.058006401090636308621387446123...
%t A201756 a = -1; b = 0; c = 4;
%t A201756 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201756 Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
%t A201756 r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]
%t A201756 RealDigits[r]    (* A201755 *)
%t A201756 r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
%t A201756 RealDigits[r]    (* A201756 *)
%Y A201756 Cf. A201741.
%K A201756 nonn,cons
%O A201756 1,3
%A A201756 _Clark Kimberling_, Dec 05 2011