This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201758 #8 Feb 07 2025 16:44:07 %S A201758 1,2,4,1,1,4,2,7,5,8,3,9,9,5,9,7,6,9,3,5,7,2,2,5,1,2,4,4,8,9,7,7,8,8, %T A201758 7,2,9,5,6,2,5,3,8,9,9,9,3,8,5,7,2,1,6,3,2,1,1,7,4,5,5,9,0,4,6,6,7,3, %U A201758 3,4,1,2,8,7,1,5,6,0,9,7,6,8,1,4,8,7,1,2,6,0,0,2,0,5,3,6,9,2,2 %N A201758 Decimal expansion of the greatest x satisfying -x^2+5=e^x. %C A201758 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201758 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201758 least: -2.21143775884204234489242329233015272... %e A201758 greatest: 1.2411427583995976935722512448977887... %t A201758 a = -1; b = 0; c = 5; %t A201758 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201758 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A201758 r = x /. FindRoot[f[x] == g[x], {x, -2.3, -2.2}, WorkingPrecision -> 110] %t A201758 RealDigits[r] (* A201757 *) %t A201758 r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] %t A201758 RealDigits[r] (* A201758 *) %Y A201758 Cf. A201741. %K A201758 nonn,cons %O A201758 1,2 %A A201758 _Clark Kimberling_, Dec 05 2011