A201759 Decimal expansion of the least x satisfying -x^2+6=e^x.
2, 4, 3, 1, 4, 7, 9, 6, 5, 9, 7, 2, 3, 0, 3, 6, 0, 3, 9, 7, 3, 6, 5, 3, 9, 0, 1, 4, 0, 8, 3, 4, 1, 5, 0, 8, 2, 9, 7, 7, 3, 1, 3, 9, 5, 9, 0, 5, 2, 2, 4, 2, 9, 2, 8, 2, 7, 6, 1, 3, 7, 9, 7, 2, 4, 5, 3, 9, 7, 8, 0, 9, 6, 9, 6, 7, 1, 1, 7, 9, 7, 8, 4, 1, 9, 5, 9, 5, 3, 3, 0, 6, 6, 1, 2, 8, 6, 7, 1
Offset: 1
Examples
least: -2.431479659723036039736539014083415082... greatest: 1.3977805354241768741646854746062333...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = -1; b = 0; c = 6; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.5, -2.4}, WorkingPrecision -> 110] RealDigits[r] (* A201759 *) r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] RealDigits[r] (* A201760 *)
Comments