This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201761 #8 Feb 07 2025 16:44:07 %S A201761 2,6,3,2,1,2,3,5,6,0,6,1,4,2,2,2,9,5,3,8,7,5,3,0,7,6,7,1,3,3,8,3,1,2, %T A201761 9,3,4,3,3,8,3,6,4,8,3,7,1,0,4,3,3,0,3,7,5,4,2,5,0,6,9,9,4,5,0,8,9,0, %U A201761 4,6,2,8,2,9,1,2,8,7,6,5,5,1,4,9,7,2,6,1,3,6,8,4,8,2,4,1,3,4,1 %N A201761 Decimal expansion of the least x satisfying -x^2+7=e^x. %C A201761 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201761 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201761 least: -2.6321235606142229538753076713383129343383... %e A201761 greatest: 1.53531760234376586202692372439720620861... %t A201761 a = -1; b = 0; c = 7; %t A201761 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201761 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A201761 r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] %t A201761 RealDigits[r] (* A201761 *) %t A201761 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201761 RealDigits[r] (* A201762 *) %Y A201761 Cf. A201741. %K A201761 nonn,cons %O A201761 1,1 %A A201761 _Clark Kimberling_, Dec 05 2011