This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201762 #8 Feb 07 2025 16:44:07 %S A201762 1,5,3,5,3,1,7,6,0,2,3,4,3,7,6,5,8,6,2,0,2,6,9,2,3,7,2,4,3,9,7,2,0,6, %T A201762 2,0,8,6,1,2,5,4,7,9,0,6,2,8,6,4,0,2,5,4,1,5,9,2,1,2,9,5,3,6,3,0,4,2, %U A201762 8,4,8,3,4,9,4,2,2,2,5,2,8,8,1,2,4,3,4,1,3,6,5,4,7,9,0,2,9,3,0 %N A201762 Decimal expansion of the greatest x satisfying -x^2+7=e^x. %C A201762 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201762 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201762 least: -2.6321235606142229538753076713383129343383... %e A201762 greatest: 1.53531760234376586202692372439720620861... %t A201762 a = -1; b = 0; c = 7; %t A201762 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201762 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A201762 r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] %t A201762 RealDigits[r] (* A201761 *) %t A201762 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201762 RealDigits[r] (* A201762 *) %Y A201762 Cf. A201741. %K A201762 nonn,cons %O A201762 1,2 %A A201762 _Clark Kimberling_, Dec 05 2011