This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201764 #8 Feb 07 2025 16:44:07 %S A201764 1,6,5,8,2,6,0,7,2,0,4,5,2,4,9,8,8,7,8,7,9,6,3,8,4,3,7,9,6,4,6,4,5,2, %T A201764 5,6,4,3,4,8,2,8,5,7,0,8,4,4,4,2,2,7,3,0,9,1,1,5,4,0,2,8,3,5,2,2,7,6, %U A201764 1,8,9,0,1,2,8,8,9,4,1,0,6,5,4,4,8,8,5,6,1,7,1,8,5,8,5,8,5,7,3 %N A201764 Decimal expansion of the greatest x satisfying -x^2+8=e^x. %C A201764 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201764 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201764 least: -2.8178476944165736893772740965040641282283... %e A201764 greatest: 1.65826072045249887879638437964645256434... %t A201764 a = -1; b = 0; c = 8; %t A201764 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201764 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A201764 r = x /. FindRoot[f[x] == g[x], {x, -2.8, -2.9}, WorkingPrecision -> 110] %t A201764 RealDigits[r] (* A201763 *) %t A201764 r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision -> 110] %t A201764 RealDigits[r] (* A201764 *) %Y A201764 Cf. A201741. %K A201764 nonn,cons %O A201764 1,2 %A A201764 _Clark Kimberling_, Dec 05 2011