This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201767 #10 Feb 07 2025 16:44:07 %S A201767 3,1,5,5,5,3,2,3,3,0,7,9,6,3,4,6,4,4,6,9,3,2,3,0,3,3,1,9,2,6,5,8,4,0, %T A201767 7,0,0,0,1,0,4,2,5,6,4,4,8,9,1,1,1,9,8,6,3,7,4,6,9,1,3,5,4,3,7,9,8,7, %U A201767 6,6,6,9,4,4,2,6,5,5,6,4,0,3,8,8,5,0,7,3,6,1,5,0,4,4,1,0,2,2,6 %N A201767 Decimal expansion of the least x satisfying 10 - x^2 = e^x. %C A201767 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201767 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201767 least: -3.1555323307963464469323033192658407000... %e A201767 greatest: 1.87144644984680656529114045650417237... %t A201767 a = -1; b = 0; c = 10; %t A201767 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201767 Plot[{f[x], g[x]}, {x, -4, 3}, {AxesOrigin -> {0, 0}}] %t A201767 r = x /. FindRoot[f[x] == g[x], {x, -3.2, -3.1}, WorkingPrecision -> 110] %t A201767 RealDigits[r] (* A201767 *) %t A201767 r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] %t A201767 RealDigits[r] (* A201768 *) %Y A201767 Cf. A201741. %K A201767 nonn,cons %O A201767 1,1 %A A201767 _Clark Kimberling_, Dec 05 2011 %E A201767 a(93) onwards corrected by _Georg Fischer_, Aug 03 2021