cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201769 Decimal expansion of the number x satisfying x^2+x=e^x.

This page as a plain text file.
%I A201769 #9 Feb 07 2025 16:44:07
%S A201769 1,2,3,5,3,4,6,2,3,3,4,6,4,6,8,7,1,6,8,0,3,1,0,1,5,6,3,0,6,3,7,1,6,4,
%T A201769 7,0,1,6,9,5,9,6,7,0,1,4,5,1,7,1,8,5,3,0,6,1,5,4,8,8,5,4,3,3,3,9,4,0,
%U A201769 3,6,9,6,0,6,1,8,5,1,6,7,5,8,4,6,7,2,6,8,2,4,1,1,4,7,7,9,7,5,3
%N A201769 Decimal expansion of the number x satisfying x^2+x=e^x.
%C A201769 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201769 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201769 x=-1.235346233464687168031015630637164701695...
%t A201769 a = 1; b = 1; c = 0;
%t A201769 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201769 Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
%t A201769 r = x /. FindRoot[f[x] == g[x], {x, -1.3, -1.2}, WorkingPrecision -> 110]
%t A201769 RealDigits[r]     (* A201769 *)
%Y A201769 Cf. A201741.
%K A201769 nonn,cons
%O A201769 1,2
%A A201769 _Clark Kimberling_, Dec 05 2011