cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201811 T(n,k)=Number of arrays of n integers in -k..k with sum zero and equal numbers of elements greater than zero and less than zero.

Original entry on oeis.org

1, 1, 3, 1, 5, 7, 1, 7, 13, 19, 1, 9, 19, 61, 51, 1, 11, 25, 151, 221, 141, 1, 13, 31, 313, 631, 1001, 393, 1, 15, 37, 571, 1401, 4621, 4145, 1107, 1, 17, 43, 949, 2651, 15681, 23857, 18733, 3139, 1, 19, 49, 1471, 4501, 42821, 90609, 164599, 82381, 8953, 1, 21, 55, 2161
Offset: 1

Views

Author

R. H. Hardin Dec 05 2011

Keywords

Comments

Table starts
....1......1.......1........1.........1..........1..........1...........1
....3......5.......7........9........11.........13.........15..........17
....7.....13......19.......25........31.........37.........43..........49
...19.....61.....151......313.......571........949.......1471........2161
...51....221.....631.....1401......2651.......4501.......7071.......10481
..141...1001....4621....15681.....42821......99961.....207621......394241
..393...4145...23857....90609....263201.....637393....1355145.....2613857
.1107..18733..164599...909945...3688091...12004357...33222463....81196529
.3139..82381..948871..6105913..27050251...93039589..266948431...668734321
.8953.375745.6359617.57290209.343631641.1554288913.5714583505.17932764577

Examples

			Some solutions for n=7 k=3
..0...-1...-3....2...-1...-2....3....0....1...-2....0....3...-2...-3....2...-3
.-1....1....1...-2....1....2....3....2...-1...-3...-2....0...-2....3....2....3
..2....0....0....3...-2...-2...-3....2....1....0....2...-3....0...-1...-1....2
..0....1....2...-3....2...-1....2...-2....0....3...-1...-1....1....1...-2...-3
..1...-3...-1....3...-2....0....0....2....1...-3....1...-3...-3....0....1...-1
..0....3....2...-3....0....2...-2...-2...-1....2....1....3....3....2...-2....0
.-2...-1...-1....0....2....1...-3...-2...-1....3...-1....1....3...-2....0....2
		

Crossrefs

Column 1 is A002426
Row 2 is A004273(n+1)
Row 3 is A016921

Formula

Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 6*k + 1
T(4,k) = 4*k^3 + 14*k + 1
T(5,k) = 20*k^3 + 30*k + 1
T(6,k) = 11*k^5 + 65*k^3 + 64*k + 1
T(7,k) = 77*k^5 + 175*k^3 + 140*k + 1
T(8,k) = (302/9)*k^7 + (2912/9)*k^5 + (3878/9)*k^3 + 318*k + 1
T(9,k) = 302*k^7 + 1064*k^5 + 1022*k^3 + 750*k + 1
T(10,k) = (15619/144)*k^9 + (37465/24)*k^7 + (146209/48)*k^5 + (86705/36)*k^3 + 1828*k + 1
T(11,k) = (171809/144)*k^9 + (48785/8)*k^7 + (386155/48)*k^5 + (206635/36)*k^3 + 4576*k + 1