A201811 T(n,k)=Number of arrays of n integers in -k..k with sum zero and equal numbers of elements greater than zero and less than zero.
1, 1, 3, 1, 5, 7, 1, 7, 13, 19, 1, 9, 19, 61, 51, 1, 11, 25, 151, 221, 141, 1, 13, 31, 313, 631, 1001, 393, 1, 15, 37, 571, 1401, 4621, 4145, 1107, 1, 17, 43, 949, 2651, 15681, 23857, 18733, 3139, 1, 19, 49, 1471, 4501, 42821, 90609, 164599, 82381, 8953, 1, 21, 55, 2161
Offset: 1
Examples
Some solutions for n=7 k=3 ..0...-1...-3....2...-1...-2....3....0....1...-2....0....3...-2...-3....2...-3 .-1....1....1...-2....1....2....3....2...-1...-3...-2....0...-2....3....2....3 ..2....0....0....3...-2...-2...-3....2....1....0....2...-3....0...-1...-1....2 ..0....1....2...-3....2...-1....2...-2....0....3...-1...-1....1....1...-2...-3 ..1...-3...-1....3...-2....0....0....2....1...-3....1...-3...-3....0....1...-1 ..0....3....2...-3....0....2...-2...-2...-1....2....1....3....3....2...-2....0 .-2...-1...-1....0....2....1...-3...-2...-1....3...-1....1....3...-2....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for rows:
T(1,k) = 1
T(2,k) = 2*k + 1
T(3,k) = 6*k + 1
T(4,k) = 4*k^3 + 14*k + 1
T(5,k) = 20*k^3 + 30*k + 1
T(6,k) = 11*k^5 + 65*k^3 + 64*k + 1
T(7,k) = 77*k^5 + 175*k^3 + 140*k + 1
T(8,k) = (302/9)*k^7 + (2912/9)*k^5 + (3878/9)*k^3 + 318*k + 1
T(9,k) = 302*k^7 + 1064*k^5 + 1022*k^3 + 750*k + 1
T(10,k) = (15619/144)*k^9 + (37465/24)*k^7 + (146209/48)*k^5 + (86705/36)*k^3 + 1828*k + 1
T(11,k) = (171809/144)*k^9 + (48785/8)*k^7 + (386155/48)*k^5 + (206635/36)*k^3 + 4576*k + 1
Comments