cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201812 Number of arrays of 4 integers in -n..n with sum zero and equal numbers of elements greater than zero and less than zero.

This page as a plain text file.
%I A201812 #10 May 25 2018 08:56:37
%S A201812 19,61,151,313,571,949,1471,2161,3043,4141,5479,7081,8971,11173,13711,
%T A201812 16609,19891,23581,27703,32281,37339,42901,48991,55633,62851,70669,
%U A201812 79111,88201,97963,108421,119599,131521,144211,157693,171991,187129,203131
%N A201812 Number of arrays of 4 integers in -n..n with sum zero and equal numbers of elements greater than zero and less than zero.
%C A201812 Row 4 of A201811.
%H A201812 R. H. Hardin, <a href="/A201812/b201812.txt">Table of n, a(n) for n = 1..210</a>
%F A201812 Empirical: a(n) = 4*n^3 + 14*n + 1.
%F A201812 Conjectures from _Colin Barker_, May 25 2018: (Start)
%F A201812 G.f.: x*(19 - 15*x + 21*x^2 - x^3) / (1 - x)^4.
%F A201812 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
%F A201812 (End)
%e A201812 Some solutions for n=21:
%e A201812   -6  15  -3  -8 -13   1  13  16  15 -15   3 -21  -6   8 -11   1
%e A201812    9 -12   8   9   9  21  -2 -18  13   9  -7  12   3  20 -18  18
%e A201812    4 -18  16 -17 -13 -14 -13   9 -20  21 -16  19 -11  -7  21 -15
%e A201812   -7  15 -21  16  17  -8   2  -7  -8 -15  20 -10  14 -21   8  -4
%Y A201812 Cf. A201811.
%K A201812 nonn
%O A201812 1,1
%A A201812 _R. H. Hardin_, Dec 05 2011