cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201813 Number of arrays of 5 integers in -n..n with sum zero and equal numbers of elements greater than zero and less than zero.

Original entry on oeis.org

51, 221, 631, 1401, 2651, 4501, 7071, 10481, 14851, 20301, 26951, 34921, 44331, 55301, 67951, 82401, 98771, 117181, 137751, 160601, 185851, 213621, 244031, 277201, 313251, 352301, 394471, 439881, 488651, 540901, 596751, 656321, 719731
Offset: 1

Views

Author

R. H. Hardin, Dec 05 2011

Keywords

Comments

Row 5 of A201811.

Examples

			Some solutions for n=17.
..6...13...-8...15..-12...-6...15....0..-13...-5...16....0...17...-4...-3...11
..0...-2....9....3...-2....0..-12....3....0..-17..-17..-16....5....0....0...-8
.-8..-12....7...-8....0....6...13...13..-11...12....0...-7...-5...13....7....0
..6....0...-8..-10....1...-3..-16..-10....8...10....3....8..-17..-16....1....2
.-4....1....0....0...13....3....0...-6...16....0...-2...15....0....7...-5...-5
		

Crossrefs

Cf. A201811.

Formula

Empirical: a(n) = 20*n^3 + 30*n + 1.
Conjectures from Colin Barker, May 25 2018: (Start)
G.f.: x*(51 + 17*x + 53*x^2 - x^3) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
(End)