A201814 Number of arrays of 6 integers in -n..n with sum zero and equal numbers of elements greater than zero and less than zero.
141, 1001, 4621, 15681, 42821, 99961, 207621, 394241, 697501, 1165641, 1858781, 2850241, 4227861, 6095321, 8573461, 11801601, 15938861, 21165481, 27684141, 35721281, 45528421, 57383481, 71592101, 88488961, 108439101, 131839241
Offset: 1
Keywords
Examples
Some solutions for n=6: ..6....4....2...-5...-6....6....2...-2...-4...-4...-4....0....4...-4....5...-4 .-5....1....6...-1....2....5...-4...-4...-1....1...-3....5...-1....1...-3...-1 .-4...-4...-5....3....5....1...-2....0....3...-1....4...-4....3...-4...-5....4 ..1...-2...-4....5...-1...-5....2....2...-6....6....1....0...-4...-1....5....1 .-1....4...-3...-4...-6...-5...-1....0....6....1...-3...-2...-6....2....2...-4 ..3...-3....4....2....6...-2....3....4....2...-3....5....1....4....6...-4....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201811.
Formula
Empirical: a(n) = 11*n^5 + 65*n^3 + 64*n + 1.
Conjectures from Colin Barker, May 25 2018: (Start)
G.f.: x*(141 + 155*x + 730*x^2 + 150*x^3 + 145*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)
Comments