cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201891 Decimal expansion of the number x satisfying x^2+2x+2=e^x.

This page as a plain text file.
%I A201891 #8 Feb 07 2025 16:44:07
%S A201891 2,6,7,4,0,6,0,3,1,3,7,2,3,5,6,0,3,1,7,9,1,3,4,5,7,2,6,4,5,9,1,6,9,4,
%T A201891 9,8,9,6,2,2,7,8,7,7,9,5,0,2,7,8,2,2,2,7,8,0,8,7,7,1,8,8,1,8,1,3,7,5,
%U A201891 6,5,5,4,9,1,6,9,9,1,8,5,7,6,4,4,5,2,1,7,4,9,5,3,8,3,5,8,2,4,7
%N A201891 Decimal expansion of the number x satisfying x^2+2x+2=e^x.
%C A201891 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201891 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201891 x=2.674060313723560317913457264591694989622787...
%t A201891 a = 1; b = 2; c = 2;
%t A201891 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201891 Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
%t A201891 r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]
%t A201891 RealDigits[r]    (* A201891 *)
%Y A201891 Cf. A201741.
%K A201891 nonn,cons
%O A201891 1,1
%A A201891 _Clark Kimberling_, Dec 06 2011