cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201892 Decimal expansion of the number x satisfying x^2+2x+3=e^x.

This page as a plain text file.
%I A201892 #8 Feb 07 2025 16:44:07
%S A201892 2,7,9,9,4,7,4,3,9,7,7,8,6,3,8,9,6,6,7,2,6,0,6,1,6,0,6,1,8,3,3,5,5,8,
%T A201892 3,6,8,3,2,8,4,8,2,3,5,5,9,9,8,2,5,3,0,5,7,5,6,4,9,0,7,6,7,9,1,6,5,6,
%U A201892 8,0,5,9,1,9,3,7,0,4,5,2,8,4,4,6,8,9,4,1,1,9,3,9,5,3,3,5,6,9,7
%N A201892 Decimal expansion of the number x satisfying x^2+2x+3=e^x.
%C A201892 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201892 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201892 x=2.79947439778638966726061606183355836832848235599...
%t A201892 a = 1; b = 2; c = 3;
%t A201892 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201892 Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
%t A201892 r = x /. FindRoot[f[x] == g[x], {x, 2.7, 2.8}, WorkingPrecision -> 110]
%t A201892 RealDigits[r]     (* A201892 *)
%Y A201892 Cf. A201741.
%K A201892 nonn,cons
%O A201892 1,1
%A A201892 _Clark Kimberling_, Dec 06 2011