cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201893 Decimal expansion of the number x satisfying x^2+2x+4=e^x.

This page as a plain text file.
%I A201893 #8 Feb 07 2025 16:44:07
%S A201893 2,9,0,3,4,4,6,8,7,9,0,2,6,8,9,6,8,5,8,2,8,6,8,8,8,1,7,7,0,3,4,0,7,5,
%T A201893 9,0,0,8,3,0,0,2,7,4,7,7,9,1,2,3,0,6,5,8,7,9,5,5,4,5,5,0,5,4,2,6,8,5,
%U A201893 3,7,2,7,7,1,4,1,4,2,9,3,1,2,3,9,7,1,8,5,4,4,1,7,7,4,4,3,2,3,0
%N A201893 Decimal expansion of the number x satisfying x^2+2x+4=e^x.
%C A201893 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201893 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201893 x=2.9034468790268968582868881770340759008300...
%t A201893 a = 1; b = 2; c = 4;
%t A201893 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201893 Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]
%t A201893 r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
%t A201893 RealDigits[r]    (* A201893 *)
%Y A201893 Cf. A201741.
%K A201893 nonn,cons
%O A201893 1,1
%A A201893 _Clark Kimberling_, Dec 06 2011