This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201895 #8 Feb 07 2025 16:44:07 %S A201895 2,6,4,9,2,1,9,8,8,7,7,6,7,2,9,2,9,6,5,3,4,8,4,9,6,1,3,7,9,5,3,4,0,8, %T A201895 1,5,2,7,9,6,9,5,4,5,4,5,4,9,7,2,0,5,7,6,3,0,7,4,6,5,8,0,9,0,6,1,2,5, %U A201895 0,6,6,9,9,0,9,4,1,9,6,6,6,6,7,3,7,3,0,1,0,6,4,5,0,2,0,7,9,3,6 %N A201895 Decimal expansion of the least x satisfying x^2+3x+1=e^x. %C A201895 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201895 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201895 least: -2.649219887767292965348496137953408152796... %e A201895 greatest: 2.8931164309252712203155349313495308853... %t A201895 a = 1; b = 3; c = 1; %t A201895 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201895 Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}] %t A201895 r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] %t A201895 RealDigits[r] (* A201895 *) %t A201895 r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] %t A201895 RealDigits[r] (* A201986 *) (* NOTE: 3 zeros *) %Y A201895 Cf. A201741. %K A201895 nonn,cons %O A201895 1,1 %A A201895 _Clark Kimberling_, Dec 06 2011