This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201896 #13 Feb 07 2025 16:44:07 %S A201896 2,8,9,3,1,1,6,4,3,0,9,2,5,2,7,1,2,2,0,3,1,5,5,3,4,9,3,1,3,4,9,5,3,0, %T A201896 8,8,5,3,0,4,0,7,9,0,9,1,5,4,6,9,7,7,4,0,1,8,2,1,6,3,4,9,2,8,1,6,6,5, %U A201896 5,3,6,6,0,7,8,3,3,7,3,0,5,1,9,0,8,9,2,1,0,2,3,8,8,7,1,7,3,4,9 %N A201896 Decimal expansion of the greatest x satisfying x^2 + 3*x + 1 = e^x. %C A201896 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201896 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201896 least: -2.649219887767292965348496137953408152796... %e A201896 greatest: 2.8931164309252712203155349313495308853... %t A201896 a = 1; b = 3; c = 1; %t A201896 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201896 Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}] %t A201896 r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] %t A201896 RealDigits[r] (* A201895 *) %t A201896 r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] %t A201896 RealDigits[r] (* A201896 *) (* NOTE 3 zeros *) %Y A201896 Cf. A201741. %K A201896 nonn,cons %O A201896 1,1 %A A201896 _Clark Kimberling_, Dec 06 2011 %E A201896 a(98) onwards corrected by _Georg Fischer_, Aug 03 2021