This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201899 #16 Jan 30 2025 11:34:07 %S A201899 2,9,9,2,2,3,4,8,7,2,0,5,3,9,3,6,8,6,5,0,9,3,3,1,1,4,5,2,7,8,3,8,8,2, %T A201899 6,2,1,8,1,1,5,9,4,5,4,7,7,4,9,0,0,6,3,6,3,9,1,2,5,6,2,3,9,9,9,3,6,1, %U A201899 6,8,9,8,5,4,9,6,4,7,1,9,5,1,2,1,1,4,9,4,4,6,8,2,5,6,7,1,0,5,1 %N A201899 Decimal expansion of the greatest x satisfying x^2+3x+2=e^x. %C A201899 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201899 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201899 least: -2.1093569955710161272316992470592578841155... %e A201899 nearest to 0: -0.608989103010165494835043701926011... %e A201899 greatest: 2.99223487205393686509331145278388262181... %t A201899 a = 1; b = 3; c = 2; %t A201899 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201899 Plot[{f[x], g[x]}, {x, -3, 3.1}, {AxesOrigin -> {0, 0}}] %t A201899 r = x /. FindRoot[f[x] == g[x], {x, -2.2, -2.1}, WorkingPrecision -> 110] %t A201899 RealDigits[r] (* A201897, least *) %t A201899 r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110] %t A201899 RealDigits[r] (* A201898, nearest 0 *) %t A201899 r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] %t A201899 RealDigits[r] (* A201899 greatest *) %Y A201899 Cf. A201741, A201897, A201898. %K A201899 nonn,cons %O A201899 1,1 %A A201899 _Clark Kimberling_, Dec 06 2011 %E A201899 Name corrected by _Sean A. Irvine_, Jan 12 2025