cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201901 Decimal expansion of the number x satisfying x^2+3x+4=e^x.

This page as a plain text file.
%I A201901 #8 Feb 07 2025 16:44:07
%S A201901 3,1,5,2,5,9,0,7,3,6,7,5,7,1,5,8,2,7,4,9,9,6,9,8,9,0,0,4,7,6,7,1,3,9,
%T A201901 7,8,5,8,1,3,8,0,9,4,4,8,2,5,9,8,9,3,1,5,4,6,3,5,0,1,5,8,0,5,9,3,5,0,
%U A201901 8,5,3,3,6,7,0,4,6,0,8,0,6,7,6,4,9,5,9,5,4,4,3,7,3,6,5,7,9,3,3
%N A201901 Decimal expansion of the number x satisfying x^2+3x+4=e^x.
%C A201901 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201901 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201901 x=3.1525907367571582749969890047671397858138094...
%t A201901 a = 1; b = 3; c = 4;
%t A201901 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201901 Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
%t A201901 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.2}, WorkingPrecision -> 110]
%t A201901 RealDigits[r]      (* A201901 *)
%Y A201901 Cf. A201741.
%K A201901 nonn,cons
%O A201901 1,1
%A A201901 _Clark Kimberling_, Dec 06 2011