cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201902 Decimal expansion of the number x satisfying x^2+3x+5=e^x.

This page as a plain text file.
%I A201902 #8 Feb 07 2025 16:44:07
%S A201902 3,2,2,0,0,1,7,9,5,0,5,2,5,7,1,0,2,9,5,7,7,7,0,9,2,0,9,2,5,0,5,1,3,0,
%T A201902 1,7,8,3,9,2,9,8,3,1,6,0,4,3,3,1,1,5,5,0,8,4,6,2,9,1,1,4,0,0,9,8,2,4,
%U A201902 9,0,5,6,5,5,3,2,3,7,6,0,7,0,3,7,7,3,6,5,3,1,3,0,2,0,7,8,8,9,8
%N A201902 Decimal expansion of the number x satisfying x^2+3x+5=e^x.
%C A201902 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201902 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201902 3.220017950525710295777092092505130178392983...
%t A201902 a = 1; b = 3; c = 5;
%t A201902 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201902 Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]
%t A201902 r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
%t A201902 RealDigits[r]      (* A201902 *)
%Y A201902 Cf. A201741.
%K A201902 nonn,cons
%O A201902 1,1
%A A201902 _Clark Kimberling_, Dec 06 2011