This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201905 #9 Feb 07 2025 16:44:07 %S A201905 3,4,2,5,6,6,7,4,1,0,2,0,2,8,7,7,3,7,3,2,6,5,6,2,6,0,6,4,7,2,5,8,1,6, %T A201905 6,9,7,8,2,7,3,5,7,2,6,1,7,3,3,2,3,3,5,5,5,3,6,6,6,3,4,3,8,0,6,5,1,2, %U A201905 9,4,4,3,4,9,4,2,4,4,2,7,5,0,1,2,8,7,3,9,9,6,5,9,7,0,2,5,7,7,1 %N A201905 Decimal expansion of the least x satisfying x^2+4x+2=e^x. %C A201905 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201905 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201905 least: -3.425667410202877373265626064725816697827357... %e A201905 nearest to 0: -0.35687491913863648565066705875991244... %e A201905 greatest: 3.2349232177760663670327961327304430448478... %t A201905 a = 1; b = 4; c = 2; %t A201905 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201905 Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}] %t A201905 r = x /. FindRoot[f[x] == g[x], {x, -3.5, -3.4}, WorkingPrecision -> 110] %t A201905 RealDigits[r] (* A201905 *) %t A201905 r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110] %t A201905 RealDigits[r] (* A201906 *) %t A201905 r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110] %t A201905 RealDigits[r] (* A201907 *) %Y A201905 Cf. A201741. %K A201905 nonn,cons %O A201905 1,1 %A A201905 _Clark Kimberling_, Dec 06 2011