This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201907 #8 Feb 07 2025 16:44:07 %S A201907 3,2,3,4,9,2,3,2,1,7,7,7,6,0,6,6,3,6,7,0,3,2,7,9,6,1,3,2,7,3,0,4,4,3, %T A201907 0,4,4,8,4,7,8,6,8,0,4,6,8,7,0,4,0,9,6,1,1,3,1,4,6,8,8,5,5,3,1,4,3,8, %U A201907 6,6,5,2,1,0,2,5,9,3,6,4,2,2,0,9,5,3,8,2,5,6,0,8,1,5,7,5,9,8,1 %N A201907 Decimal expansion of the greatest x satisfying x^2+4x+2=e^x. %C A201907 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201907 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201907 least: -3.425667410202877373265626064725816697827357... %e A201907 nearest to 0: -0.35687491913863648565066705875991244... %e A201907 greatest: 3.2349232177760663670327961327304430448478... %t A201907 a = 1; b = 4; c = 2; %t A201907 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201907 Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}] %t A201907 r = x /. FindRoot[f[x] == g[x], {x, -3.5, -3.4}, WorkingPrecision -> 110] %t A201907 RealDigits[r] (* A201905 *) %t A201907 r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110] %t A201907 RealDigits[r] (* A201906 *) %t A201907 r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110] %t A201907 RealDigits[r] (* A201907 *) %Y A201907 Cf. A201741. %K A201907 nonn,cons %O A201907 1,1 %A A201907 _Clark Kimberling_, Dec 06 2011