cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201911 Irregular triangle of 7^k mod prime(n).

This page as a plain text file.
%I A201911 #14 Feb 02 2019 06:42:37
%S A201911 1,1,1,2,4,3,0,1,7,5,2,3,10,4,6,9,8,1,7,10,5,9,11,12,6,3,8,4,2,1,7,15,
%T A201911 3,4,11,9,12,16,10,2,14,13,6,8,5,1,7,11,1,7,3,21,9,17,4,5,12,15,13,22,
%U A201911 16,20,2,14,6,19,18,11,8,10,1,7,20,24,23,16,25
%N A201911 Irregular triangle of 7^k mod prime(n).
%C A201911 Except for the fourth row, the first term of each row is 1. Many sequences are in this one: starting at A036132 (mod 71) and A070404 (mod 11).
%H A201911 T. D. Noe, <a href="/A201911/b201911.txt">Rows n = 1..60, flattened</a>
%e A201911 The first 9 rows are:
%e A201911   1
%e A201911   1
%e A201911   1, 2,  4,  3
%e A201911   0
%e A201911   1, 7,  5,  2, 3, 10,  4,  6,  9,  8
%e A201911   1, 7, 10,  5, 9, 11, 12,  6,  3,  8,  4,  2
%e A201911   1, 7, 15,  3, 4, 11,  9, 12, 16, 10,  2, 14, 13,  6, 8,  5
%e A201911   1, 7, 11
%e A201911   1, 7,  3, 21, 9, 17,  4,  5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10
%t A201911 nn = 10; p = 7; t = p^Range[0,Prime[nn]]; Flatten[Table[If[Mod[n, p] == 0, {0}, tm = Mod[t, n]; len = Position[tm, 1, 1, 2][[-1,1]]; Take[tm, len-1]], {n, Prime[Range[nn]]}]]
%o A201911 (GAP) P:=Filtered([1..350],IsPrime);;
%o A201911 R:=List([1..Length(P)],n->OrderMod(7,P[n]));;
%o A201911 Flat(Concatenation([1,1,1,2,4,3,0],List([5..10],n->List([0..R[n]-1],k->PowerMod(7,k,P[n]))))); # _Muniru A Asiru_, Feb 01 2019
%Y A201911 Cf. A201908 (2^k), A201909 (3^k), A201910 (5^k).
%Y A201911 Cf. A070404 (11), A070405 (13), A070407 (17), A070409 (23), A070413 (29), A070415 (31), A070420 (37), A070422 (39), A070424 (41), A070425 (43), A070429 (47), A036132 (71).
%K A201911 nonn,tabf
%O A201911 1,4
%A A201911 _T. D. Noe_, Dec 07 2011