This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201924 #9 Feb 07 2025 16:44:07 %S A201924 3,0,2,4,0,1,4,5,0,1,1,3,5,2,9,3,7,8,4,7,7,5,5,8,9,6,2,7,7,9,7,3,9,5, %T A201924 3,5,1,6,5,9,8,2,8,2,8,7,1,3,2,9,0,7,9,1,9,8,7,5,0,3,5,5,4,8,2,6,2,3, %U A201924 8,2,5,2,4,7,0,6,6,4,3,2,9,4,3,2,4,8,4,3,4,2,4,1,0,3,3,5,6,4,2 %N A201924 Decimal expansion of the least x satisfying x^2+4x+3=e^x. %C A201924 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201924 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201924 least: -3.024014501135293784775589627797395351659... %e A201924 nearest to 0: -0.79522661386054079889626155638871... %e A201924 greatest: 3.2986275628038651802559413164923413431... %t A201924 a = 1; b = 4; c = 3; %t A201924 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201924 Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}] %t A201924 r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110] %t A201924 RealDigits[r] (* A201924 *) %t A201924 r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] %t A201924 RealDigits[r] (* A201925 *) %t A201924 r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110] %t A201924 RealDigits[r] (* A201926 *) %Y A201924 Cf. A201741. %K A201924 nonn,cons %O A201924 1,1 %A A201924 _Clark Kimberling_, Dec 06 2011