This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201926 #8 Feb 07 2025 16:44:07 %S A201926 3,2,9,8,6,2,7,5,6,2,8,0,3,8,6,5,1,8,0,2,5,5,9,4,1,3,1,6,4,9,2,3,4,1, %T A201926 3,4,3,1,8,2,0,4,3,0,3,6,5,6,2,3,9,5,6,3,7,8,3,7,0,0,8,6,3,3,5,7,8,8, %U A201926 6,2,0,1,5,3,4,4,6,8,4,1,7,2,0,6,2,7,1,9,0,6,5,3,7,8,4,1,2,3,0 %N A201926 Decimal expansion of the greatest x satisfying x^2+4x+3=e^x. %C A201926 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201926 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201926 least: -3.024014501135293784775589627797395351659... %e A201926 nearest to 0: -0.79522661386054079889626155638871... %e A201926 greatest: 3.2986275628038651802559413164923413431... %t A201926 a = 1; b = 4; c = 3; %t A201926 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201926 Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}] %t A201926 r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110] %t A201926 RealDigits[r] (* A201924 *) %t A201926 r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] %t A201926 RealDigits[r] (* A201925 *) %t A201926 r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110] %t A201926 RealDigits[r] (* A201926 *) %Y A201926 Cf. A201741. %K A201926 nonn,cons %O A201926 1,1 %A A201926 _Clark Kimberling_, Dec 06 2011