A201927 Decimal expansion of the least x satisfying x^2+4x+4=e^x.
2, 3, 1, 4, 3, 6, 9, 9, 0, 2, 9, 6, 7, 6, 2, 8, 0, 1, 9, 1, 7, 3, 9, 1, 3, 3, 9, 2, 0, 4, 2, 9, 4, 7, 1, 8, 9, 3, 2, 0, 3, 5, 0, 5, 5, 7, 6, 8, 2, 8, 5, 8, 5, 9, 0, 7, 9, 3, 7, 5, 4, 4, 3, 2, 0, 9, 4, 9, 2, 5, 2, 5, 8, 4, 2, 1, 4, 5, 1, 0, 4, 0, 7, 3, 1, 4, 6, 5, 7, 5, 5, 4, 7, 5, 4, 9, 6, 6, 2
Offset: 1
Examples
least: -2.3143699029676280191739133920... nearest to 0: -1.53607809402693113051136705... greatest: 3.3566939800333213068257690241...
Crossrefs
Cf. A201741.
Programs
-
Mathematica
a = 1; b = 4; c = 4; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110] RealDigits[r] (* A201927 *) r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110] RealDigits[r] (* A201928 *) r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110] RealDigits[r] (* A201929 *)
Comments