This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201928 #8 Feb 07 2025 16:44:07 %S A201928 1,5,3,6,0,7,8,0,9,4,0,2,6,9,3,1,1,3,0,5,1,1,3,6,7,0,5,2,1,5,5,0,9,5, %T A201928 9,8,1,8,1,3,6,9,8,2,9,7,7,4,3,8,3,6,3,8,9,0,2,0,6,2,0,6,5,4,4,9,6,7, %U A201928 5,7,7,8,0,2,5,5,2,4,6,8,4,1,4,1,8,2,9,0,2,7,8,0,4,0,6,7,9,0,5 %N A201928 Decimal expansion of the x nearest 0 that satisfies x^2+4x+4=e^x. %C A201928 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201928 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201928 least: -2.3143699029676280191739133920... %e A201928 nearest to 0: -1.53607809402693113051136705... %e A201928 greatest: 3.3566939800333213068257690241... %t A201928 a = 1; b = 4; c = 4; %t A201928 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201928 Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}] %t A201928 r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110] %t A201928 RealDigits[r] (* A201927 *) %t A201928 r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110] %t A201928 RealDigits[r] (* A201928 *) %t A201928 r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110] %t A201928 RealDigits[r] (* A201929 *) %Y A201928 Cf. A201741. %K A201928 nonn,cons %O A201928 1,2 %A A201928 _Clark Kimberling_, Dec 06 2011