This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201929 #8 Feb 07 2025 16:44:07 %S A201929 3,3,5,6,6,9,3,9,8,0,0,3,3,3,2,1,3,0,6,8,2,5,7,6,9,0,2,4,1,8,9,0,4,6, %T A201929 1,6,9,6,4,8,9,1,7,5,3,0,7,0,3,2,0,4,4,3,2,7,9,6,6,8,3,7,3,6,7,9,8,0, %U A201929 9,5,2,9,1,3,7,1,4,2,6,8,7,3,9,9,4,9,3,9,6,4,8,3,7,6,2,4,1,2,7 %N A201929 Decimal expansion of the greatest x satisfying x^2+4x+4=e^x. %C A201929 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201929 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201929 least: -2.3143699029676280191739133920... %e A201929 nearest to 0: -1.536078094026931130511... %e A201929 greatest: 3.35669398003332130682576902... %t A201929 a = 1; b = 4; c = 4; %t A201929 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201929 Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}] %t A201929 r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110] %t A201929 RealDigits[r] (* A201927 *) %t A201929 r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110] %t A201929 RealDigits[r] (* A201928 *) %t A201929 r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110] %t A201929 RealDigits[r] (* A201929 *) %Y A201929 Cf. A201741. %K A201929 nonn,cons %O A201929 1,1 %A A201929 _Clark Kimberling_, Dec 06 2011