cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201930 Decimal expansion of the number x satisfying x^2 + 4*x + 5 = e^x.

This page as a plain text file.
%I A201930 #10 Feb 07 2025 16:44:07
%S A201930 3,4,1,0,1,4,6,8,4,4,9,4,5,6,2,9,4,9,2,2,8,6,4,8,0,6,3,6,5,3,0,2,2,6,
%T A201930 0,6,6,2,5,2,5,3,7,8,6,7,5,2,9,8,6,1,1,6,1,3,1,4,9,0,9,4,7,4,9,5,1,4,
%U A201930 5,3,9,8,1,4,0,1,7,1,0,0,4,5,7,2,1,2,0,7,0,5,3,8,2,1,6,3,0,6,0
%N A201930 Decimal expansion of the number x satisfying x^2 + 4*x + 5 = e^x.
%C A201930 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201930 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201930 3.410146844945629492286480636530226066252...
%t A201930 a = 1; b = 4; c = 5;
%t A201930 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201930 Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}]
%t A201930 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
%t A201930 RealDigits[r]     (* A201930 *)
%Y A201930 Cf. A201741.
%K A201930 nonn,cons
%O A201930 1,1
%A A201930 _Clark Kimberling_, Dec 06 2011
%E A201930 a(96) onwards corrected by _Georg Fischer_, Aug 03 2021