This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201934 #10 Mar 30 2025 16:01:22 %S A201934 2,5,9,0,6,9,5,3,3,0,5,1,1,0,9,1,0,8,6,8,6,4,0,5,6,6,4,6,5,5,9,6,2,2, %T A201934 6,2,8,9,6,4,8,0,5,4,5,7,8,6,4,2,5,5,1,3,1,6,9,2,1,5,6,5,9,4,9,0,1,7, %U A201934 2,4,9,0,0,0,8,8,2,5,6,7,1,2,6,4,9,8,1,3,4,8,3,9,7,0,1,2,4,8,4 %N A201934 Decimal expansion of the x nearest 0 that satisfies x^2+5x+2=e^x. %C A201934 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201934 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201934 least: -4.5640783603793772013414868523420... %e A201934 nearest to 0: -0.259069533051109108686405... %e A201934 greatest: 3.43200871161068035280379146269... %t A201934 a = 1; b = 5; c = 2; %t A201934 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201934 Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}] %t A201934 r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110] %t A201934 RealDigits[r] (* A201933 *) %t A201934 r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110] %t A201934 RealDigits[r] (* A201934 *) %t A201934 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] %t A201934 RealDigits[r] (* A201935 *) %t A201934 RealDigits[x/.FindRoot[x^2+5x+2==E^x,{x,1},WorkingPrecision->120],10,120][[1]] (* _Harvey P. Dale_, Mar 30 2025 *) %Y A201934 Cf. A201741. %K A201934 nonn,cons %O A201934 0,1 %A A201934 _Clark Kimberling_, Dec 06 2011