This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201935 #8 Feb 07 2025 16:44:07 %S A201935 3,4,3,2,0,0,8,7,1,1,6,1,0,6,8,0,3,5,2,8,0,3,7,9,1,4,6,2,6,9,4,7,1,9, %T A201935 7,0,6,0,4,2,2,3,3,0,3,7,3,5,4,2,0,5,2,1,0,0,8,7,1,4,8,9,9,5,3,7,4,7, %U A201935 9,7,1,1,3,4,3,6,4,6,3,1,4,1,6,5,3,4,9,1,1,4,0,0,4,6,5,3,3,1,8 %N A201935 Decimal expansion of the greatest x satisfying x^2+5x+2=e^x. %C A201935 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %H A201935 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201935 least: -4.5640783603793772013414868523420... %e A201935 nearest to 0: -0.259069533051109108686405... %e A201935 greatest: 3.43200871161068035280379146269... %t A201935 a = 1; b = 5; c = 2; %t A201935 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201935 Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}] %t A201935 r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110] %t A201935 RealDigits[r] (* A201933 *) %t A201935 r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110] %t A201935 RealDigits[r] (* A201934 *) %t A201935 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] %t A201935 RealDigits[r] (* A201935 *) %Y A201935 Cf. A201741. %K A201935 nonn,cons %O A201935 1,1 %A A201935 _Clark Kimberling_, Dec 06 2011