A201937 Decimal expansion of the greatest negative number x satisfying 2*x^2=e^(-x).
1, 4, 8, 7, 9, 6, 2, 0, 6, 5, 4, 9, 8, 1, 7, 7, 1, 5, 6, 2, 5, 4, 3, 7, 0, 1, 2, 0, 9, 3, 2, 6, 3, 2, 5, 6, 3, 7, 2, 6, 4, 8, 4, 2, 4, 3, 7, 8, 0, 2, 1, 0, 6, 8, 4, 6, 2, 3, 6, 9, 6, 8, 9, 7, 7, 2, 6, 8, 6, 8, 0, 9, 4, 4, 6, 2, 7, 6, 8, 7, 4, 4, 2, 2, 8, 9, 2, 0, 8, 3, 0, 1, 2, 0, 9, 0, 1, 8, 8
Offset: 1
Examples
least x: -2.617866613066812769178978059143202... greatest negative x: -1.487962065498177156254... greatest x: 0.5398352769028200492118039083633...
Crossrefs
Cf. A201936.
Programs
-
Mathematica
a = 2; b = 0; c = 0; f[x_] := a*x^2 + b*x + c; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110] RealDigits[r] (* A201936 *) r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] RealDigits[r] (* A201937 *) r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201938 *)
Comments