This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201939 #9 Feb 04 2025 10:05:45 %S A201939 1,1,5,0,5,8,4,9,6,7,4,1,8,6,6,3,9,4,9,5,3,4,9,3,3,7,3,3,6,1,3,7,8,8, %T A201939 1,9,5,7,6,6,8,3,7,4,9,4,8,4,4,2,4,2,3,4,1,1,8,3,3,9,2,5,1,8,0,8,8,3, %U A201939 2,2,5,4,6,1,7,6,4,1,1,7,2,8,0,1,3,6,7,5,4,4,1,4,5,2,4,6,9,9,5 %N A201939 Decimal expansion of x>0 satisfying x*cosh(x)=2. %C A201939 For many choices of u and v, there is exactly one x>0 satisfying x*cosh(u*x)=v. Guide to related sequences, with graphs included in Mathematica programs: %C A201939 u.... v.... x %C A201939 1.... 1.... A069814 %C A201939 1.... 2.... A201939 %C A201939 1.... 3.... A201943 %C A201939 2.... 1.... A201944 %C A201939 3.... 1.... A201945 %C A201939 2.... 2.... A202283 %C A201939 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A201939 For an example related to A201939, take f(x,u,v)=x*cosh(u*x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A201939 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201939 1.15058496741866394953493373361378819576... %t A201939 (* Program 1: A201939 *) %t A201939 u = 1; v = 2; %t A201939 f[x_] := x*Cosh[u*x]; g[x_] := v %t A201939 Plot[{f[x], g[x]}, {x, 0, 2}, {AxesOrigin -> {0, 0}}] %t A201939 r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A201939 RealDigits[r] (* A201939 *) %t A201939 (* Program 2: implicit surface of u*cosh(x)=v *) %t A201939 f[{x_, u_, v_}] := x*Cosh[u*x] - v; %t A201939 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .2}]}, {v, 0, 20}, {u, 1, 9}]; %t A201939 ListPlot3D[Flatten[t, 1]] (* for A201939 *) %Y A201939 Cf. A201946. %K A201939 nonn,cons %O A201939 1,3 %A A201939 _Clark Kimberling_, Dec 15 2011