cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201995 Decimal expansion of the absolute value of zeta'''(2), the third derivative of the Riemann zeta function at 2.

This page as a plain text file.
%I A201995 #21 Jun 30 2025 04:34:12
%S A201995 6,0,0,0,1,4,5,8,0,2,8,4,3,0,4,4,8,6,5,6,4,3,9,4,1,2,1,7,5,3,7,8,4,8,
%T A201995 3,8,3,7,4,0,5,8,8,6,1,5,9,4,4,5,6,8,5,8,5,0,3,5,1,0,7,9,5,0,0,8,5,9,
%U A201995 7,4,1,6,7,4,7,5,1,0,0,3,5,9,2,4,1,5,0,3,4,2,5,6,0
%N A201995 Decimal expansion of the absolute value of zeta'''(2), the third derivative of the Riemann zeta function at 2.
%H A201995 Jason Bard, <a href="/A201995/b201995.txt">Table of n, a(n) for n = 1..2000</a>
%H A201995 B. K. Choudhury, <a href="https://doi.org/10.1098/rspa.1995.0096">The Riemann zeta-function and its derivatives</a>, Proc. R. Soc. Lond A 445 (1995) 477-499.
%H A201995 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2007). See p. 21.
%F A201995 zeta'''(2)= -Sum_{k>=1} log^3(k)/k^2.
%F A201995 Equals 3! + Sum_{k>=0} (-1)^k*gamma(3+k)/k!, where gamma(.) are the Stieltjes constants A001620, A082633, A086279 etc. [Choudhury, Thm. 4]
%e A201995 zeta'''(2) = -6.00014580284304486564394121753784..
%p A201995 evalf(Zeta(3,2));
%t A201995 RealDigits[ Zeta'''[2], 10, 93] // First (* _Jean-François Alcover_, Feb 20 2013 *)
%Y A201995 Cf. A013661, A073002, A201994.
%K A201995 cons,nonn
%O A201995 1,1
%A A201995 _R. J. Mathar_, Dec 07 2011