This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201997 #29 Jun 22 2023 23:34:43 %S A201997 0,1,2,4,5,6,7,8,9,10,12,13,14,16,17,18,20,21,22,23,24,25,26,32,33,34, %T A201997 36,37,38,39,40,41,42,44,45,46,48,49,50,52,53,54,55,56,57,58,60,64,65, %U A201997 66,68,69,70,71,72,73,74,76,77,78,80,81,82,84,85,86,87 %N A201997 a(n) is the decimal value of the binary vector used to select terms of A075058 whose sum is n. %H A201997 Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">"Complete" sequence</a>. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023] %F A201997 Binary(a(n)) x A075058 = n, where x is the inner product and the binary vector is in ascending powers of 2 with infinite trailing zeros. %e A201997 For n=22, the binary vector when applied to A075058 is {0,1,0,1,1,0,...}, consequently 2+7+13=22. The decimal value of the binary vector (in ascending powers of 2) is 26, so a(22)=26. %t A201997 prevprime[n_Integer] := (j=n; If[n==1, 1, While[!PrimeQ[j], j--]; j]); aprime[n_Integer] := (aprime[n]=prevprime[Sum[aprime[m], {m, 0, n - 1}] + 1]); gentable[n_Integer] := (m=n; ptable={0}; While[m!=0, (i=0; While[aprime[i]<=m && ptable[[i + 1]]!=1, (AppendTo[ptable, 0];i++)]; ptable[[i]] = 1; m = m - aprime[i - 1])]; ptable); decimal[n_Integer] := (gentable[n]; Sum[2^(k-1)*ptable[[k]], {k, 1, Length[ptable]}]); aprime[0]=1; Table[decimal[r], {r,0,100}] %Y A201997 Cf. A007924, A066352, A200947, A075058. %K A201997 nonn,base,more %O A201997 0,3 %A A201997 _Frank M Jackson_, Dec 07 2011 %E A201997 Edited by _N. J. A. Sloane_, May 20 2023