This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201998 #27 May 15 2014 09:57:06 %S A201998 244,249,251,266,270,295,301,336,344,389,399,407,416,418,445,449,454, %T A201998 466,489,494,496,500,506,527,531,545,547,563,570,571,582,583,585,611, %U A201998 612,620,622,624,628,630,636,652,661,662,663,679,693,699 %N A201998 Positive numbers n such that n^2 + n + 41 is composite and there are no positive integers c such that n = c*x^2 + (c + 1)*x + c*41 for an integer x. %C A201998 The composition of functions k(x) factors. k(x) = (x^2 + x + 41)*(c^2*x^2 + (c^2 + 2*c)*x + c^2*41 + c + 1). So k(x) is the product of two integers greater than one and thus composite. %D A201998 John Stillwell, Elements of Number Theory, Springer, 2003, page 3. %H A201998 Matt C. Anderson <a href="https://sites.google.com/site/mattc1anderson/home-1">A prime producing polynomial writeup</a> %p A201998 maxn:=1000: %p A201998 A:={}: %p A201998 for n from 1 to maxn do %p A201998 g:=n^2+n+41: %p A201998 if isprime(g)=false then %p A201998 A:=A union {n}: %p A201998 end if: %p A201998 end do: %p A201998 # The set A contains values n such that n^2+n+41 is composite and n < maxn. %p A201998 c:=1: %p A201998 x:=-1: %p A201998 p:=41: %p A201998 q:=c*x^2-(c+1)*x+c*p: %p A201998 A2:=A: %p A201998 while q < maxn do %p A201998 while q < maxn do %p A201998 A2:=A2 minus {q}: %p A201998 A2:=A2 minus {c*x^2+(c+1)*x+c*p}: %p A201998 x:=x+1: %p A201998 q:=c*x^2-(c+1)*x+c*p: %p A201998 end do: %p A201998 c:=c+1: %p A201998 x:=-1: %p A201998 q:=c*x^2-(c+1)*x+c*p: %p A201998 end do: %p A201998 A2; %t A201998 Reap[For[n=1, n<700, n++, If[!PrimeQ[n^2+n+41], If[Reduce[c>0 && n == c*x^2+(c+1)*x+41*c , {c, x}, Integers] === False, Sow[n]]]]][[2, 1]] (* _Jean-François Alcover_, Apr 30 2014 *) %Y A201998 Cf. A007634 (n^2 + n + 41 is composite). %Y A201998 Cf. A235381 (similar to this sequence). %K A201998 nonn %O A201998 1,1 %A A201998 _Matt C. Anderson_, Dec 07 2011