cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202019 Triangle by rows, related to the numbers of binary trees of height less than n, derived from the Mandelbrot set.

This page as a plain text file.
%I A202019 #52 Feb 17 2025 01:31:32
%S A202019 1,1,1,1,2,1,1,1,4,6,6,5,2,1,1,1,8,28,60,94,116,114,94,69,44,26,14,5,
%T A202019 2,1,1,1,16,120,568,1932,5096,10948,19788,30782,41944,50788,55308,
%U A202019 54746,49700,41658,32398,23461,15864,10068,6036,3434,1860,958,470,221,100,42,14,5,2,1,1
%N A202019 Triangle by rows, related to the numbers of binary trees of height less than n, derived from the Mandelbrot set.
%C A202019 As shown on p. 74 [Diaconis & Graham], n-th row polynomials are cyclic with period n, given real roots, if the polynomials are divided through by n. For example, taking x^3 + 2x^2 + x + 1 = 0, the real root = -1.75487766... = c. Then using x^2 + c, we obtain the period three trajectory: -1.75487... -> 1.32471...-> 0.
%C A202019 The shuffling connection [p.75], resulting in a permutation that is the Gilbreath shuffle: "To make the connection with shuffling cards, write down a periodic sequence starting at zero. Write a one above the smallest point, a two above the next smallest point and so on. For example, if c = -1.75486...(a period three point), we have:
%C A202019 2.............1.............3......
%C A202019 0........-1.75487........1.32471... For a fixed value of c, the numbers written on top code up a permutation that is a Gilbreath shuffle".
%C A202019 Row sums = A003095: (1, 2, 5, 26, 677,...) relating to the number of binary trees of height less than n.
%C A202019 Let f(z) = z^2 + c, then row k lists the expansion of the n-fold composition f(f(...f(0)...)) in falling powers of c (with the coefficients for c^0 omitted). The n initial terms of the reversed n-th row are the Catalan numbers (cf. A137560). - _Joerg Arndt_, Jun 04 2016
%D A202019 Persi Diaconis & R. L. Graham, "Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks", Princeton University Press, 2012; pp. 73-83.
%H A202019 Alois P. Heinz, <a href="/A202019/b202019.txt">Rows n = 1..13, flattened</a>
%H A202019 Juan Carlos Nuño and Francisco J. Muñoz, <a href="https://arxiv.org/abs/2112.15563">Entropy-Variance curves of binary sequences generated by random substitutions of constant length</a>, arXiv:2112.15563 [math.PR], 2021.
%F A202019 Coefficients of x by rows such that given n-th row p(x), the next row is (p(x))^2 + x; starting x -> (x^2 + x) -> (x^4 + 2*x^3 + x^2 + x)...
%F A202019 T(n,k) = A309049(2^(n-1)-1,k-1). - _Alois P. Heinz_, Jul 11 2019
%e A202019 Row 4 = (1, 4, 6, 6, 5, 2, 1, 1) since (x^4 + 2x^3 + x^2 + x)^2 + x = x^8 + 4x^7 + 6x^6 + 6x^5 + 5x^4 + 2x^3 + x^2 + x.
%e A202019 Triangle begins:
%e A202019   1;
%e A202019   1, 1;
%e A202019   1, 2,  1,  1;
%e A202019   1, 4,  6,  6,  5,   2,   1,  1;
%e A202019   1, 8, 28, 60, 94, 116, 114, 94, 69, 44, 26, 14, 5, 2, 1, 1;
%e A202019   ...
%p A202019 b:= proc(n) option remember; `if`(n=0, 1, (g-> (f-> expand(
%p A202019       x^n+b(f)*b(n-1-f)))(min(g-1, n-g/2)))(2^ilog2(n)))
%p A202019     end:
%p A202019 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(2^(n-1)-1)):
%p A202019 seq(T(n), n=1..7);  # _Alois P. Heinz_, Jul 11 2019
%t A202019 b[n_] := b[n] = If[n == 0, 1, Function[g, Function[f, Expand[x^n + b[f]*
%t A202019      b[n-1-f]]][Min[g-1, n-g/2]]][2^(Length[IntegerDigits[n, 2]]-1)]];
%t A202019 T[n_] := CoefficientList[b[2^(n-1)-1], x];
%t A202019 Array[T, 7] // Flatten (* _Jean-François Alcover_, Feb 19 2021, after _Alois P. Heinz_ *)
%Y A202019 Row sums are A003095.
%Y A202019 Cf. A137560 (reversed rows).
%Y A202019 Cf. A309049.
%K A202019 nonn,tabf
%O A202019 1,5
%A A202019 _Gary W. Adamson_, Dec 08 2011