cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A202023 #26 Jul 08 2025 07:42:03
%S A202023 1,1,0,1,1,0,1,3,0,0,1,6,1,0,0,1,10,5,0,0,0,1,15,15,1,0,0,0,1,21,35,7,
%T A202023 0,0,0,0,1,28,70,28,1,0,0,0,0,1,36,126,84,9,0,0,0,0,0,1,45,210,210,45,
%U A202023 1,0,0,0,0,0
%N A202023 Triangle T(n,k), read by rows, given by (1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C A202023 Riordan array (1/(1-x), x^2/(1-x)^2).
%C A202023 A skewed version of triangular array A085478.
%C A202023 Mirror image of triangle in A098158.
%C A202023 Sum_{k, 0<=k<=n} T(n,k)*x^k = A138229(n), A006495(n), A138230(n),A087455(n), A146559(n), A000012(n), A011782(n), A001333(n),A026150(n), A046717(n), A084057(n), A002533(n), A083098(n),A084058(n), A003665(n), A002535(n), A133294(n), A090042(n),A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 respectively.
%C A202023 Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A009116(n), A000007(n), A011782(n), A006012(n), A083881(n), A081335(n), A090139(n), A145301(n), A145302(n), A145303(n), A143079(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
%C A202023 From _Gus Wiseman_, Jul 08 2025: (Start)
%C A202023 After the first row this is also the number of subsets of {1..n-1} with k maximal runs (sequences of consecutive elements increasing by 1) for k = 0..n. For example, row n = 5 counts the following subsets:
%C A202023   {}  {1}        {1,3}    .  .  .
%C A202023       {2}        {1,4}
%C A202023       {3}        {2,4}
%C A202023       {4}        {1,2,4}
%C A202023       {1,2}      {1,3,4}
%C A202023       {2,3}
%C A202023       {3,4}
%C A202023       {1,2,3}
%C A202023       {2,3,4}
%C A202023       {1,2,3,4}
%C A202023 Requiring n-1 gives A202064.
%C A202023 For anti-runs instead of runs we have A384893.
%C A202023 (End)
%F A202023 T(n,k) = binomial(n,2k).
%F A202023 G.f.: (1-x)/((1-x)^2-y*x^2).
%F A202023 T(n,k)= Sum_{j, j>=0} T(n-1-j,k-1)*j with T(n,0)=1 and T(n,k)= 0 if k<0 or if n<k.
%F A202023 T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k) for n>1, T(0,0) = T(1,0) = 1, T(1,1) = 0, T(n,k) = 0 if k>n or if k<0. - _Philippe Deléham_, Nov 10 2013
%e A202023 Triangle begins :
%e A202023 1
%e A202023 1, 0
%e A202023 1, 1, 0
%e A202023 1, 3, 0, 0
%e A202023 1, 6, 1, 0, 0
%e A202023 1, 10, 5, 0, 0, 0
%e A202023 1, 15, 15, 1, 0, 0, 0
%e A202023 1, 21, 35, 7, 0, 0, 0, 0
%e A202023 1, 28, 70, 28, 1, 0, 0, 0, 0
%t A202023 Table[Length[Select[Subsets[Range[n-1]],Length[Split[#,#2==#1+1&]]==k&]],{n,0,10},{k,0,n}] (* _Gus Wiseman_, Jul 08 2025 *)
%Y A202023 Column k = 1 is A000217.
%Y A202023 Column k = 2 is A000332.
%Y A202023 Row sums are A011782 (or A000079 shifted right).
%Y A202023 Removing all zeros gives A034839 (requiring n-1 A034867).
%Y A202023 Last nonzero term in each row appears to be A093178, requiring n-1 A124625.
%Y A202023 Reversing rows gives A098158, without zeros A109446.
%Y A202023 Without the k = 0 column we get A210039.
%Y A202023 Row maxima appear to be A214282.
%Y A202023 A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.
%Y A202023 A268193 counts integer partitions by number of maximal runs, for anti-runs A384881.
%Y A202023 Cf. A000045, A000071, A007318, A010027, A053538, A084938, A202064, A208342, A210034, A384175, A384893.
%K A202023 nonn,tabl
%O A202023 0,8
%A A202023 _Philippe Deléham_, Dec 10 2011