This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A202051 #11 May 26 2018 08:45:26 %S A202051 1926,7848,25650,71964,180054,411696,874998,1750140,3325410,6046344, %T A202051 10581246,17906868,29418570,47069856,73546794,112483476,168725358, %U A202051 248648040,360539802,515057004,725762286,1009756368,1388415150 %N A202051 Number of (n+2) X 9 binary arrays avoiding patterns 001 and 110 in rows and columns. %C A202051 Column 7 of A202052. %H A202051 R. H. Hardin, <a href="/A202051/b202051.txt">Table of n, a(n) for n = 1..210</a> %F A202051 Empirical: a(n) = (1/10080)*n^9 + (3/560)*n^8 + (211/1680)*n^7 + (67/40)*n^6 + (6709/480)*n^5 + (6041/80)*n^4 + (663941/2520)*n^3 + (79913/140)*n^2 + (4735/7)*n + 324. %F A202051 Conjectures from _Colin Barker_, May 26 2018: (Start) %F A202051 G.f.: 18*x*(107 - 634*x + 1880*x^2 - 3472*x^3 + 4298*x^4 - 3652*x^5 + 2114*x^6 - 800*x^7 + 179*x^8 - 18*x^9) / (1 - x)^10. %F A202051 a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>10. %F A202051 (End) %e A202051 Some solutions for n=3: %e A202051 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 %e A202051 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0 %e A202051 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 1 %e A202051 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 %e A202051 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 %Y A202051 Cf. A202052. %K A202051 nonn %O A202051 1,1 %A A202051 _R. H. Hardin_, Dec 10 2011