A202052 T(n,k)=Number of (n+2)X(k+2) binary arrays avoiding patterns 001 and 110 in rows and columns.
102, 216, 216, 390, 528, 390, 636, 1080, 1080, 636, 966, 1968, 2470, 1968, 966, 1392, 3304, 4980, 4980, 3304, 1392, 1926, 5216, 9170, 11016, 9170, 5216, 1926, 2580, 7848, 15760, 22092, 22092, 15760, 7848, 2580, 3366, 11360, 25650, 41088, 47950, 41088
Offset: 1
Examples
Some solutions for n=5 k=3 ..0..0..0..0..0....1..0..1..1..1....0..1..0..1..1....0..1..0..1..1 ..1..1..1..1..1....0..1..0..0..0....1..0..1..0..0....1..0..0..0..0 ..0..0..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1 ..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..0 ..0..1..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1 ..0..1..0..1..1....0..0..0..0..0....0..1..0..1..0....0..0..0..0..0 ..0..1..0..1..0....1..0..1..0..0....0..1..0..1..0....0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..511
Crossrefs
Formula
Empirical (via A086113): T(n,k)=2*(n+2)*(2*binomial(n+k+3,n+2)-k-2)
Empirical for columns:
T(n,1) = 2*n^3 + 18*n^2 + 46*n + 36
T(n,2) = (2/3)*n^4 + (28/3)*n^3 + (142/3)*n^2 + (284/3)*n + 64
T(n,3) = (1/6)*n^5 + (10/3)*n^4 + (155/6)*n^3 + (290/3)*n^2 + 164*n + 100
T(n,4) = (1/30)*n^6 + (9/10)*n^5 + (59/6)*n^4 + (111/2)*n^3 + (2552/15)*n^2 + (1278/5)*n + 144
T(n,5) = (1/180)*n^7 + (7/36)*n^6 + (511/180)*n^5 + (805/36)*n^4 + (4606/45)*n^3 + (2443/9)*n^2 + (1854/5)*n + 196
T(n,6) = (1/1260)*n^8 + (11/315)*n^7 + (59/90)*n^6 + (308/45)*n^5 + (7807/180)*n^4 + (7667/45)*n^3 + (14139/35)*n^2 + (17876/35)*n + 256
T(n,7) = (1/10080)*n^9 + (3/560)*n^8 + (211/1680)*n^7 + (67/40)*n^6 + (6709/480)*n^5 + (6041/80)*n^4 + (663941/2520)*n^3 + (79913/140)*n^2 + (4735/7)*n + 324
Comments