cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202052 T(n,k)=Number of (n+2)X(k+2) binary arrays avoiding patterns 001 and 110 in rows and columns.

Original entry on oeis.org

102, 216, 216, 390, 528, 390, 636, 1080, 1080, 636, 966, 1968, 2470, 1968, 966, 1392, 3304, 4980, 4980, 3304, 1392, 1926, 5216, 9170, 11016, 9170, 5216, 1926, 2580, 7848, 15760, 22092, 22092, 15760, 7848, 2580, 3366, 11360, 25650, 41088, 47950, 41088
Offset: 1

Views

Author

R. H. Hardin Dec 10 2011

Keywords

Comments

Table starts
..102...216...390....636....966....1392....1926.....2580.....3366.....4296
..216...528..1080...1968...3304....5216....7848....11360....15928....21744
..390..1080..2470...4980...9170...15760...25650....39940....59950....87240
..636..1968..4980..11016..22092...41088...71964...120000...192060...296880
..966..3304..9170..22092..47950...95984..180054...320180...544390...890904
.1392..5216.15760..41088..95984..205792..411696...777760..1400080..2418432
.1926..7848.25650..71964.180054..411696..874998..1750140..3325410..6046344
.2580.11360.39940.120000.320180..777760.1750140..3694920..7390020.14108400
.3366.15928.59950.192060.544390.1400080.3325410..7390020.15519262.31038744
.4296.21744.87240.296880.890904.2418432.6046344.14108400.31038744.64899456

Examples

			Some solutions for n=5 k=3
..0..0..0..0..0....1..0..1..1..1....0..1..0..1..1....0..1..0..1..1
..1..1..1..1..1....0..1..0..0..0....1..0..1..0..0....1..0..0..0..0
..0..0..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1
..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..0..0..0..0
..0..1..0..0..0....1..0..1..1..1....0..1..0..1..0....0..1..0..1..1
..0..1..0..1..1....0..0..0..0..0....0..1..0..1..0....0..0..0..0..0
..0..1..0..1..0....1..0..1..0..0....0..1..0..1..0....0..1..0..1..0
		

Crossrefs

Column 1 is A086113(n+2)
Column 2 is A086114(n+2)
Column 3 is A086115(n+2)
Diagonal is A032260(n+2)

Formula

Empirical (via A086113): T(n,k)=2*(n+2)*(2*binomial(n+k+3,n+2)-k-2)
Empirical for columns:
T(n,1) = 2*n^3 + 18*n^2 + 46*n + 36
T(n,2) = (2/3)*n^4 + (28/3)*n^3 + (142/3)*n^2 + (284/3)*n + 64
T(n,3) = (1/6)*n^5 + (10/3)*n^4 + (155/6)*n^3 + (290/3)*n^2 + 164*n + 100
T(n,4) = (1/30)*n^6 + (9/10)*n^5 + (59/6)*n^4 + (111/2)*n^3 + (2552/15)*n^2 + (1278/5)*n + 144
T(n,5) = (1/180)*n^7 + (7/36)*n^6 + (511/180)*n^5 + (805/36)*n^4 + (4606/45)*n^3 + (2443/9)*n^2 + (1854/5)*n + 196
T(n,6) = (1/1260)*n^8 + (11/315)*n^7 + (59/90)*n^6 + (308/45)*n^5 + (7807/180)*n^4 + (7667/45)*n^3 + (14139/35)*n^2 + (17876/35)*n + 256
T(n,7) = (1/10080)*n^9 + (3/560)*n^8 + (211/1680)*n^7 + (67/40)*n^6 + (6709/480)*n^5 + (6041/80)*n^4 + (663941/2520)*n^3 + (79913/140)*n^2 + (4735/7)*n + 324