cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A202065 The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.

This page as a plain text file.
%I A202065 #26 Mar 18 2018 15:43:59
%S A202065 1,0,3,60,2835,219240,25519725,4169185020,910363278825,
%T A202065 256123949281200,90240816705714675,38923077574032151500,
%U A202065 20174526711617730727275,12373285262231460281715000,8863077725980930704895768125,7332455066541096999983523547500
%N A202065 The number of simple labeled graphs on 2n nodes whose connected components are even length cycles.
%H A202065 Robert Israel, <a href="/A202065/b202065.txt">Table of n, a(n) for n = 0..225</a>
%F A202065 E.g.f. for aerated sequence: exp(-x^2/4)/(1-x^2)^(1/4).
%F A202065 a(n) ~ (2*n)! * 2^(1/4)*exp(-1/4)*Gamma(3/4)/((2*n)^(3/4)*Pi). - _Vaclav Kotesovec_, Sep 24 2013
%F A202065 a(n) = ((2n)!/n!)*2F0(1/4,-n;;4)*(-1/4)^n. - _Benedict W. J. Irwin_, May 24 2016
%F A202065 (4n^3-n)a(n-1) + (4n^2+2n)a(n) - a(n+1) = 0. - _Robert Israel_, Mar 02 2017
%p A202065 f:= gfun:-rectoproc({(4*n^3-n)*a(n-1) + (4*n^2+2*n)*a(n) - a(n+1)=0,a(0)=1,a(1)=0},a(n),remember):
%p A202065 map(f, [$0..30]); # _Robert Israel_, Mar 02 2017
%t A202065 nn = 30; a = Log[1/(1 - x^2)^(1/4)] - x^2/4; Table[i, {i, 0, nn, 2}]! CoefficientList[Series[Exp[a], {x, 0, nn}], x][[Table[i, {i, 1, nn+1, 2}]]]
%t A202065 Table[((2 n)!/n!) HypergeometricPFQ[{1/4, -n}, {}, 4] (-1/4)^n, {n, 0, 15}] (* _Benedict W. J. Irwin_, May 24 2016 *)
%Y A202065 Cf. A001205, A053532, A053533.
%K A202065 nonn
%O A202065 0,3
%A A202065 _Geoffrey Critzer_, Dec 10 2011
%E A202065 a(14) and e.g.f. corrected by _Robert Israel_, Mar 02 2017