A202077 Number of arrays of 5 integers in -n..n with sum zero and the sum of every adjacent pair being odd.
2, 26, 78, 264, 504, 1128, 1786, 3262, 4660, 7540, 10092, 15066, 19278, 27174, 33644, 45428, 54846, 71622, 84770, 107780, 125532, 156156, 179478, 219234, 249184, 299728, 337456, 400582, 447330, 524970, 582072, 676296, 745178, 858194, 940374
Offset: 1
Keywords
Examples
Some solutions for n=3: -2 0 0 -2 0 2 0 0 2 2 -2 2 2 2 -2 2 -1 -1 -3 1 -1 -1 -1 3 1 -3 3 1 -3 -3 1 -3 0 2 2 0 0 0 2 -2 -2 -2 2 0 0 2 -2 0 1 -3 1 -1 -1 -1 1 -1 -1 3 -3 -3 -1 -1 3 3 2 2 0 2 2 0 -2 0 0 0 0 0 2 0 0 -2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A202076.
Formula
Empirical: a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Conjectures from Colin Barker, May 26 2018: (Start)
G.f.: 2*x*(1 + 12*x + 22*x^2 + 45*x^3 + 22*x^4 + 12*x^5 + x^6) / ((1 - x)^5*(1 + x)^4).
a(n) = (230*n^4 + 552*n^3 + 424*n^2 + 96*n) / 384 for n even.
a(n) = (230*n^4 + 368*n^3 + 148*n^2 + 16*n + 6) / 384 for n odd.
(End)
Comments