A202079 Number of arrays of 8 integers in -n..n with sum zero and the sum of every adjacent pair being odd.
12, 524, 5832, 34632, 142692, 462436, 1264272, 3044496, 6644604, 13406844, 25370840, 45516120, 78055380, 128783316, 205485856, 318414624, 480831468, 709627884, 1026024168, 1456353128, 2032933188, 2795035716, 3789951408
Offset: 1
Keywords
Examples
Some solutions for n=3: .-3...-2....1...-3....2....2....1....1...-2....2....3...-2....1...-3....3....0 ..0....1...-2....0....3....1....0...-2....3....3...-2....3....2....0...-2...-1 ..3....2...-1....1....0...-2...-3...-3....2...-2....1....2....3....3...-3....0 ..0...-1...-2....2...-3....1....0...-2...-1...-3....0...-1...-2...-2....2...-1 ..1...-2...-1....3...-2...-2....3....3....2....2....1...-2...-3....3....1....0 .-2...-3....0...-2...-1...-1...-2....2...-3...-3....2....1....0...-2....0...-3 ..1....2....3...-3...-2....2....1....3....2...-2...-3...-2...-3...-1...-3....2 ..0....3....2....2....3...-1....0...-2...-3....3...-2....1....2....2....2....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A202076.
Formula
Empirical: a(n) = 8*a(n-1) -28*a(n-2) +56*a(n-3) -70*a(n-4) +56*a(n-5) -28*a(n-6) +8*a(n-7) -a(n-8).
Empirical g.f.: 4*x*(1 + x)*(3 + 104*x + 390*x^2 + 104*x^3 + 3*x^4) / (1 - x)^8. - Colin Barker, May 27 2018
Comments